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Large Uncertainties in
Global Climate Model Predictions

These model differences have been
5 HadCM3 lasted for last three decades.
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Model predictions of the time evolution of the globally
averaged temperature change.



Introduction

> Large uncertainty in GCM climate predictions
“+ clouds, precipitation, ocean, bio-/cryo-spheres
strong nonlinear

> Climate sensitivity: ??? time scale dependence
% short-term variations of Ts and Rnet

“+ long-term relationship of Ts and Rnet
from weather to century time scales

> Questions for observations:
“+ Can we retrieve’ (estimate) the climate sensitivity
and reduce the uncertainty from measurements?
“» What is the ‘retrieval model’ for the feedbacks?
Need tools and methods in the analysis



Approaches

> Climate sensitivity estimations
- complex enough for fundamental physics
» simple enough to understand processes
* observational-driven model studies

> Energy balance & perturbation
> Key forcing: atmospheric radiation

» Short- and long-term relationships



Climate perturbation

Cp d(;l'ts =(1-a)So— soTs?

equilibrium state: Aa = Ae = 0

4
co dATs __4eoTs®
dt TS
__Ax23l o 3 3ATs
288

fn = =3.3 W/K/m?

define:
ATs=T

This is only for the equilibrium state of the climate.
At short time scales, this feature cannot be found.



History

Cp d—T — — fnT short-time scale
d feedbacks
ol CF T+ fT=F - £
t long-term feedbacks

: _ potentially exist
For steady state with small perturbation:

T:Toe—t/T T:Cp/fn

For forced small perturbation:

T=Fa-eY7)/ts  7=Cp/f



History (conti.)

Hansen et al. 1984 (Geophys. Monograph); Manabe 1990 (JPO)
Estimate total feedback coefficient ftot (actually fs)
Huge heat capacity due to oceans, thus “wait and see”
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Perturbation model: energy balance

of]

de——F+ftotT+N+S

N: non-radiative heating (daily)

S: non-feedback natural
radiative variability (5-yr cyc)

fiors T, + T =-6 Wm~K-!

F. F=0or removed

Cp: 50 m water

Spencer and Braswell 2009
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Perturbation theory: energy balance model

dT fm 1
Co—=F+ fsT + N +S1 Tdt’
PGt ¥ to 1o

N: non-radiative heating (daily) < avg N =0

S: non-feedback natural radiation (5-yr cycle) & avg S =0
fo f,=f, +f =-6 Wm2K?;f =-27Wm~?K-!

fior- Tt = Ts + 1

F: F=0or removed

to: memory length <> minimal (1 year); other lengths also tested

Cp: 100 m mixed layer ocean (slab ocean)

last 10-year results of 100-year run
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mixing layer
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1. Solving boundary conditions instead of initial conditions
2. D limits or deep ocean heat transport -- much longer time scale
3. Climate system memory — generalized feedback (e.g., ice sheets)




More general conditions are considered in this study

1. Boundary condition approach
2. System has memory with memory length t, (could be multi-cycles)
3. There Is a deep ocean heat transport

dT fm ¢
(0 BN T IR (8 R Tdt'—O
Pt v mh—“

fm 1
O = u(F — fsT A Tdt'
/J( to jt_t() )
ftot= fs — fm



Analytic System

dT fm
Cp'— =F — fsT 4 Tdt'
Pt > T k-to

1. Avoid the difficulty on deep ocean heat storage

2. Solution is not specifically dependent on mixing layer
depth, only the ratio of D/n

Forcing: F=yt  (F (t=0) =0; F(t=120yr) = 1.8W/m?)
4. f=f +f=6W/m?K; Thus, fro7 =fs -f,

w

Reduced forms:

1) t,approaches 0; & 2) Ocean heat transport =0
— 15t order ODE of Hansen, Manabe, Schwartz etc




Current solution
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T=0.65K; Q, =0.85 W/m?
constraints for the means of last 10 yrs

\| Numerical solution of f_, and n (or p): easier

Analytic solution is also available

(solving transcendental equations; more math)




Results

NASA

E N ]
E 0.5 :— —:
o B |
o .
& D{]: .
- - ]
. —0.51 —
» "memory = 10 yrs ]
S _1.0 “simulated Incoming rad.
1880 1900 1920 1940 1960 1980 2000
1.9 — — T T T - T T
2 1.0F =
= = =
B 0.0¢ —— =
o —0.5F —]
'-': - -
5 —1.0tblack: simulated — 0.2K —

1940 1960 1980

Time {year)

1880 1900 1920



Results
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1. Most heat is transported to deep ocean (u > 80%).

2. Total feedback coefficients: f,,, =6-4.7=13(t, =1 yr);
f..=6-5.0=1.0(t, = 10yr)
3. Positive feedback obtained:
feedback coefficients: fc=4.7-2.7=2.0
fc=5.0-27=23



Results
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gradually increases in the constant for memory length < 15 yrs

With deep ocean heat transport, the time constant of climate
system is much longer, maybe about 70 ~ 120 yrs.



Linearized Approximation

dT i ¢ dT
Co— =F-fiT+—f . Td'-0 Cp— =F — ftotT
Pt e ft—to P4t ¢

ftot = (F —Cp%—I)/T ftot = (F —Qnet)/T

ftot = (1.8 — 0.85)/0.65 = 1.46

U=0.91 assuming 100m mixed layer

Reduced forms: resulted in slightly weaker positive feedback than
those of the perturbation model calculations



Data needed: surface temperature & TOA net radiation

long-term feedback slow response from systep

memories

long-time to reach
equilibrium
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* There are large uncertainties in the climate
predictions from present global climate models.

+ Energy balance model is used for explanation of
observed TOA net radiation (or ocean heat
storage) and surface temperature.

* Major physical processes of the climate system,
such as deep ocean heat transport and system
memory, are considered.

» This study targets at boundary instead of classic
initial condition problems (actual climate issue).
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+ Short-time scale climate system adjustment (or
relaxation) alone cannot mimic climate change:
different scales, different physics

* For the best estimate of Qnet, estimated
feedback factor is 1.0 ~ 1.3, or, 2xCO, (or 3.7
W/m?) warming about 2.85 ~ 3.7 K. Results is
sensitive to Qnet, not Ts and fs.

(only provide a tool for public)

 There is a strong desire for long-term radiation

missions with calibrations of high accuracy and
precision, such as CLARREO & CERES.



Thank You!

% Lin et al. 2010, ACP
% Lin et al. 2010, JQSRT



